

Alchesay H.S. 11th and 12th **Pre-Calculus Chapter 1 Relations and Functions**

Summary

Deciding if a relation is a function and if so describing the domain and range. Finding composite functions. Identifying piece wise function.

Topic: Relations and Functions

Big Ideas: Finding the domain and range of a function. Find composite functions and describe discontinuity of piece-wise functions. **Essential Questions:**

6 days Dates:						
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes			
I will learn whether a relation is a function,	Relation	RFR.BF.2 Model relationships through				
the domain and range of a function, and	Domain	composition and attend to the				
evaluating functions. I will learn what a	Range	restrictions of the domain.				
composite function is and the points of	Vertical line test	RFR.BF.3 Rewrite a function as a				
discontinuity of a piece-wise function.	Function	composition of functions.				
	Composite function	RFR.AF.2 Sketch the graph of a function				
	Piece-wise function	that models a relationship between two				
	quantities, identifying key features.					
Priority Strategies:						
Use graphing calculators to graph functions	and find their domain, rar	nge, and points of discontinuity.				
Writing:						
QWS: What part of a function does the don	nain represent? The range	2?				
QWS: What does the word discontinuity re	present?					

Summary

Use matrices to represent and manipulate data, use matrix operations to solve problems, find the inverse and determinant of a matrix, and use matrices to solve a system

Topic Using Matrices

Big Ideas Use Matrices to represent data, manipulate data, and solve problems.	
Essential Questions What is a Matrix? How is it useful?	

Anchor Chart	PreCalculus: What is a Matrix?	Method of Gaussia	n Elimination 3x3 Example
	System of linear equations:	4x - 3y + z = -8	Solve for x, y, and z
	2x + 3y = 7 $3x - 2y = 4$ Matrix Augmented Matrix $row 1 \longrightarrow \begin{bmatrix} 2 & 3 \\ 3 & -2 \end{bmatrix}$ $\begin{bmatrix} 2 & 3 & 7 \\ 3 & -2 & 4 \end{bmatrix}$ column 1 column 2 $\# \text{ of rows} = \# \text{ of equations}$ $\# \text{ of columns} = \# \text{ of variables}$	$\begin{array}{c} -2x + y - 3z = -4 \\ x - y + 2z = 3 \\ 4 & -3 & 1 & & -8 \\ -2 & 1 & -3 & & -4 \\ 1 & -1 & 2 & & 2 \\ 1 & -1 & 2 & & 2 \\ 1 & -1 & 2 & & 2 \\ 0 & -1 & 1 & & 2 \\ 0 & 1 & -7 & & -20 \end{array}$	$\begin{bmatrix} 1 & 0 & 0 & & -2 \\ 0 & 1 & 0 & & 1 \\ 0 & 0 & 1 & & 3 \\ 1x + 0y + 0z = -2 \\ 0x + 1y + 0z = 1 \\ 0x + 0y + 1z = 3 \end{bmatrix}$ x = 2 y = 1 z = 3

Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes
I will learn what a matrix is, how to	System	RM.UM.1 Use matrices to represent and	
perform operations with matrices, and	Matrix	manipulate data.	
how to solve a system using a matrix.	Element	RM.UM.2 Use matrix operations to solve	
	Row and Column	problems. Add, subtract, and multiply	
	Add Matrix	matrices of appropriate dimensions.	
	Subtract Matrix	Multiply matrices by scalars to produce	
	Multiply Matrix	new matrices.	
	Scalar	RM.UM.3 Find the inverse and	
	Inverse	determinant of a matrix.	
	Determinant	RM.UM.4	
	Zero Matrix	Use matrices to solve systems of linear	
	Identity matrix	equations.	
Priority Strategies: Have students perfor	m operations by hand and the	n allow use of the graphing calculator.	
Writing:			
QWS: How is a matrix a system?			
QWS: Can a 2x3 matrix be multiplied by	a 3x3?		

Alchesay H.S. 11th and 12th **Pre-Calculus** Chapter 3 The Nature of Graphs

Summary

Examine the nature of graphs through graphing, find the inverse of a function and graph the inverse, determine whether a function is continuous, determine whether a function is increasing or decreasing, find extrema of a function and determine asymptotes

Topic Relations and Functions

Big Ideas: Identify the nature of nonlinear graphs and examine critical components of the graphs		
Essential Questions: What patterns can be found through examining behavior and critical points of various graphs?		

	Transformation Rules		constant function	Identity function	polynami	al functions
Function Notation	Type of Transformation	Change to Coordinate Point	- -	111rt111		+++++
f(x) + d	Vertical translation up d units	$(x, y) \rightarrow (x, y+d)$				*****
f(x) - d	Vertical translation down d units	$(x, y) \rightarrow (x, y - d)$	- 0		- AMARK	- 43
f(x + c)	Horizontal translation left c units	$(x,y) \rightarrow (x-c,y)$				+++++++++++++++++++++++++++++++++++++++
f(x - c)	Horizontal translation right c units	$(x,y) \rightarrow (x+c,y)$	+++++++++++++++++++++++++++++++++++++++	*****	+++++++++++++++++++++++++++++++++++++++	
-f(x)	Reflection over x-axis	$(x,y) \rightarrow (x,-y)$		absolute value	greatest integer	
f(-x)	Reflection over y-axis	$(x,y) \rightarrow (-x,y)$	square root function	Ametion	function	rational function
af(x)	Vertical stretch for a >0	$(x,y) \rightarrow (x,ay)$				11111
af(x)	Vertical compression for $0 < a < 1$	$(x, y) \rightarrow (x, ay)$				
f(bx)	Horizontal compression for b >0	$(x,y) \rightarrow \left(\frac{x}{b}, y\right)$				
f(bx)	Horizontal stretch for 0 < b < 1	$(x,y) \rightarrow \left(\frac{x}{b}, y\right)$		111111111	AUTUU	

3.2/3.3 Families of Graphs

2 Days						
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes			
I can graph non-linear functions, apply	Parent Graph	Perquisite Skill				
transformations, and examine key	Transformations					
components Radical Function						
Rational Functions						
Priority Strategies: Have students sketch graphs by hand then use technology to apply the transformations						
Writing:						
QWS: Demonstrate how a graph can be transfo	ormed to move left or right and/or u	p or down?				

3.4 Inverse Functions and Relations

I can determine and graph the inverses of relations and functions Inverses of Horizontal Line Test Inverse. If not, of on the domain to requirement for find the inverse domain.	Resources/ Notes
	nine if a function so, find the efine a restriction nat meets the invertibility and on the restricted
Priority Strategies: Stress the concept that the domain and range are inverted for the inverse and that if a function does function	not pass the horizontal line test its inverse will not be a

3.5 Continuity and End Behavior

2 days					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
I will determine if a function is continuous, identify end behavior, and determine if a function is increasing or decreasing	Continuous Discontinuous Infinite Jump Point	RFR.AF.4 Use limits to describe long-range behavior, asymptotic behavior, and points of discontinuity.			
	Everywhere				
Priority Strategies:					
Examine various graphs and if the graphs are continuous, if they are not then identify the points of discontinuity					
Writing:					
How do you determine end behavior of function	tion?				
Explain why the square root functions are un	defined under certain intervals				

3.6 Critical Points and Extrema

2 Days						
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes			
I can find the extrema of a function	Critical Points	RFR.AF.4 Use limits to describe				
	Maximum	long-range behavior, asymptotic				
	Minimum	behavior, and points of				
	Point of Inflection	discontinuity.				
Relative Extrema						
	Relative Maximum					
	Relative Minimum					
Priority Strategies:						
Graph various functions, describe critical points, and end behavior						
Writing:	Writing:					
For the graph y=sinO describe the extrema of	of the function					

3.7 Graphs of Rational Functions

2 Days					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
Graph rational functions and determine	Rational Function	RFR.AF.4 Use limits to describe			
vertical, horizontal, and slant asymptotes	Asymptote	long-range behavior, asymptotic			
	Vertical Asymptote	behavior, and points of			
	Horizontal Asymptote	discontinuity.			
	Slant Asymptote				
Priority Strategies:					
Show student show to algebraically find the asymptote of a rational function, follow up by using the graphing calculator to find asymptotes of a rational function					
Writing:					
Write an equation of a function with a vertic	al asymptote at -5				

Common Struggles:

Alchesay H.S. 11th and 12th **Pre-Calculus Chapter 5 The Trigonometric functions**

Summary

Focus on the relationship of the six trigonometric functions and their graphs. Solve non right triangles using the law of sines and cosines.

Topic Trigonometric Functions

Big Ideas Focus on the relationship of the six trigonometric functions and their graphs Essential Questions How are the six trigonometric graphs related and how are they useful?

Anchor Chart			
Site Applying Trig Functions The bullery Rights of Education Machinet Angles of Depression & Ander of Education Angles of Depression	- 5.5 Bling Right Tringer Table of Whee Table of W	56 Low of Sines Low of Sons $\frac{a}{SinA} = \frac{b}{Sinc} = \frac{a}{Sinc}$	5.3 Try Functions to the Unit Code Vitables, Unit Code
	There as the area and the state of the state	Area of Triangles $k = \frac{1}{2} b c \sin \theta$ $k = \frac{1}{2} a \delta \sin C$ $k = \frac{1}{2} a c \sin \theta$ Area of Triangles $k = \frac{1}{2} a \frac{c \sin \theta \sin c}{\sin \theta}$ $k = \frac{1}{2} b^2 \frac{\sin \theta \sin c}{\sin \theta}$ $k = \frac{1}{2} c^2 \frac{\sin \theta \sin \theta}{\sin \theta}$	Try Functions $G(n) = \frac{1}{7}$ $G(n) = \frac{1}{7}$ an the anit $G(n) = \frac{1}{7}$ $Hech = \frac{1}{7}$ Given the transferred to the t

Whiteriver Unified School District Curriculum Maps 2020-2021

5.1 Angles and Degree Measure

2 days					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
I will learn how to convert decimals degrees	Vertex	Pre-requisite for graphing	https://www.mathopenref.com/reference-		
into minutes and seconds, vice versa. I will	Initial Side	trigonometric functions	angle.html		
Find the number of degrees in a given number	Terminal Side				
of rotations, and identify angels that are	Standard Position				
conterminal with a given angle.	Degree				
	Minutes				
	Seconds				
	Quadrantal Angle				
	Conterminal Angle				
Priority Strategies:					
Emphasize definitions of conterminal angle and rotations so that student understands that many angles pass thru a fixed position					
Writing:					
How many angles pass through an angle in stand	dard position?				

5.2 Trigonometric Ratios in Right Triangles

2 days					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
I can find the values of trigonometric ratios for	Hypotenuse	Prerequisite for graphing six			
acute angles of a right triangle	Legs	trig functions			
	Side Adjacent				
	Trigonometric Ratios				
	Sine				
	Cosine				
	Tangent				
	Cosecant				
	Secant				
	Cotangent				
Priority Strategies:					
Use acronym SOHCAHTOA to help students remember the ratios for the six trig functions					
Writing:					
Give students a right triangle with two sides give	en. Ask students to explain how to	find the values of the six trigonon	netric ratios.		

5.3 Trigonometric Functions on the Unit Circle

2 Days						
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes			
I can find the values of the six trigonometric	Unit Circle	RFR.AF.5 Use the unit circle				
functions using the unit circle	Circular functions	to explain symmetry (odd and				
	Trigonometric Functions	even) and periodicity of				
		trigonometric functions				
Priority Strategies:						
Use acronym SOHCAHTOA to help students remember the ratios for the six trig functions						
Writing:						
Explain why csc (180) is undefined						

5.4 Applying Trigonometric Functions

2 Days					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
I will use trigonometry to find the measures of	Angle of Elevation	RFR.ETT.1 Model real-world			
the side of right triangles	Angle of Depression	situations involving			
		trigonometry.			
Priority Strategies: Have the students read the application problems twice, identify what is given, identify the question, build a model of the problem, and solve					
Writing: What is the difference between the inverse and the reciprocal of a trigonometric ratio?					

5.5 Solving Right Triangles

2 Days					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
I can evaluate inverse trig functions, find	Inverse				
missing angle measurements, and solve right	Arcsine				
triangles	Arccosine				
	Arctangent				
	Solve a Triangle				
Priority Strategies: Make sure students understand the difference between arcsine and inverse of sin					
Writing: Have students explain the process of s	olving a right triangle when either t	wo sides are given, or one side an	id an angle are given.		

5.6 The Law of Sines

2 Days					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
I will solve triangles by using the Law of Sines	Law of Sines	RFR.ETT.2 Apply the Law of			
and find the area of a triangle, if the measures		Sines and Law of Cosines to			
of two side and the included angle or the		solve problems.			
measures of two angles and a side are given.		RFR.ETT.3 Use trigonometry			
		to find the area of triangles.			
Priority Strategies: Stress the concept that the domain and range are inverted for the inverse and that if a function does not pass the horizontal line test its					
inverse will not be a function					
Writing: Show that the law of sines is true for a	Writing: Show that the law of sines is true for a 30° - 60° triangle				

5.7 The Ambiguous Case for the Law of Sines

2 days						
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes			
I can determine whether a triangle has zero,	Ambiguous Case	RFR.ETT.2 Apply the Law of				
one, or two solutions. Solve triangles using		Sines and Law of Cosines to				
the Law of Sines.		solve problems.				
Priority Strategies:						
When looking for more than one solution, remind students sine is positive in the first and second quadrants, so reference angles in both quadrants apply						
Writing:						
Have students describe their approach to solving a given triangle						

5.8 Law of Cosines

2 Days					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
I will solve triangles by using the Law of	Pythagorean theorem	RFR.ETT.2 Apply the Law of			
Cosines and find the area of triangles if the	Law of Cosines	Sines and Law of Cosines to			
measures of the three sides are given.	Heron's formula	solve problems.			
		RFR.ETT.3 Use trigonometry			
		to find the area of triangles.			
Priority Strategies:					
Have students make a poster of the Law of Cosines and Heron's formula					
Writing:					
Compare and contrast the 3 variations of the La	w of Cosines				

Common Struggles:

Students may have trouble building a model and discerning between angle of elevation and depression

Alchesay H.S. 11th and 12th **Pre-Calculus** Chapter 6 Graphs of Trigonometric Functions

Chapter 6 Graphs of Trigonometric Functions

Summary

Review the graphs of trigonometric functions and their inverses using radian measure. Identify amplitude, period, phase shift, and vertical shift. Find linear and angular velocity and writing trigonometric equations to model real-life situations.

Big Ideas Review the six trig graphs, convert to radian measure, identify key features of the graphs and apply transformations **Essential Questions** Why do we use Radians?

	6.1.1	lights and Radian Pressure	6.2 Liner and Angular	6.3 Graphing Sine and Game Functions
	Rodun Macare	r 0,11	Argula- displacement As any circular object Nations counterclasticase about 18 center conterclasticase about 18 center an angle michaele 16 18 starting particular	Revealer. To the values of a function or the sense for cash given indicate Revised Set the deman , the function is such to be periodic. The such to be periodic. The such to be periodic.
2 2 2	numert degrees Le diari	25" + 330 + 17 230" + 330 + 17 -10	Angular Velocity The satisfies of the change in the central angle to the the same in the central angle to the time required the the change is time as angular velocity, represented to the command	t function Acriedic ∞ , $f(x+-)=f(w)$ t The least participal value of oc. The least participal value of oc. The least participal value of oc.
ch	ery radiersto degrees	$\frac{2N}{3} = \frac{2N}{3} \times \frac{180}{7}$ $= 720^{\circ}$	Downsonal Analysis and to avoid instance out	are the sin/ces 2 The doman is the gruphs 2 The doman is the
Ret Ge	a of a cular-dector	A= toto	times belowly If an object nerves alon a circle of radius of r units this its liner celouty of 139" by V=19 r=radius	3 Y xintration on The S y Xintration on The S y Noticest is C G mark gel and S Contract 2 + Iton S y Other on the S y Other of the
		N/		yer, rest tim (yer, occur x=Trn

6.4 Amplihade and Period of Vine and Coone Functions 6.5 Translation of Sine and Cosine Functions As amplitude y = Alon & y = A 200 & helf of the height of the same Prose Shift Herizontal translation 4= Asin[Lote] and Ronglitude 4 = Acas [Loto] is - c where koo E to the shift is lothe lete 4= 70 y=sinke y=caste Period of Vice & Casine Functions Period= 3 Th Vectica North y=Asin [kotc] +h and y=Acos[kotc] +h h= is the workal shift The number of cycles per unit at time period frequency frequency period Frequency Theo shifts up theo shifts down Midline Horitental axis y = Avin (keto)th or y= Avis (keto)th Anusoidal Function

6.1 Angles and Radian Measures

2 days					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
I will change radian measure to degree measure	Degree	RFR.AF.5 Sketch the graph of all six			
and vice versa. Find are length given the	Radian	trigonometric functions, identifying key			
measure of the central angle. Find the area of a	Circular Arc	features.			
sector .	Central Angle				
Priority Strategies:					
Use a table of values, created by students, to grap	oh the six trigonometric func	tions in radians. Make sure students unders	tand how to convert between radians		
and degrees.					
Writing:					
Answer and explain your solution to the following question: Earth rotates on its axis once every 24 hours. How long does it take Earth to rotate through an angle of 300 degrees? (20 hrs.) How long does it take Earth to rotate through an angle of 2pi/3 Radian? (8 hrs.)					

6.2 Linear and Angular Velocity

2 Days					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
I will find Linear and Angular Velocity	Angular Displacement	RFR.AF.3 Interpret key features of			
	Angular Velocity	graphs and tables for a function that			
	Dimensional Analysis	models a relationship between two			
	Linear Velocity	quantities in terms of the quantities.			
Priority Strategies: Linear velocity it directly proportional to the radius					
Writing: Students write a paragraph explaining the similarities and differences between angular velocity and linear velocity. Use one or more examples to					
illustrate these ideas.					

6.3 Graphing Sine and Cosine Functions

2 Days						
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes			
I can use the graphs of the sine and cosine	Periodic	RFR.AF.5 Sketch the graph of all six				
functions	Period	trigonometric functions, identifying key				
		features.				
Priority Strategies: Have students use their tables of values to graph sine and cosine						
Writing: When does the graph of sine cross the x-axis? When does the graph of cosine cross the y-axis?						

6.4 Amplitude and Period of Sine and Cosine Functions

2 days				
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes	
I will find the amplitude and period for sine and	Amplitude	RFR.AF.5 Sketch the graph of all six		
cosine functions. Write equations of sine and		trigonometric functions, identifying key		
cosine functions given the amplitude and		features.		
period.				
Priority Strategies: Have students graph the sine cosine functions, have them measure the height of the wave to determine the amplitude.				
Writing: How are the sine cosine graphs different? The same?				

6.5 Translation of Sine and Cosine Functions

2 Days					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
I will find the phase shift and the vertical	Phase Shift	RFR.AF.5 Sketch the graph of all six			
translation for sine and cosine functions. Write	Vertical Shift	trigonometric functions, identifying key			
the equations of sine and cosine functions given	Midline	features.			
the amplitude, period, phase shift, and vertical	Compound Functions				
translation Graph compound functions.					
Priority Strategies: Graph functions by hand using rules for translations, then graph using the graphing calculator. When finding the equation for a graph have					
students use the rules for translations and then check themselves with a graphing calculator					
Writing: How do you alter an equation to get a ve	ertical or horizontal shift?				

6.6 Modeling Real-World Data with Sinusoidal Functions

2 Days				
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes	
I can model real-world data using sine and	Sinusoidal Functions	RFR.ETT.1 Model real-world situations		
cosine functions. Use sinusoidal functions to		involving trigonometry.		
solve problems.				
Priority Strategies: Create a model from the application problem, solve the problem, check the efficacy of the problem.				
Writing: If a point on an oscilloscope rides the sin	ne curve y=sinx what path wo	ould the point on its reciprocal function y=csc	x travel?	

6.8 Trigonometric Inverses and Their Graphs

2 Days				
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes	
I can graph inverse trigonometric functions.	Principal Values	RFR.AF.5 Sketch the graph of all six		
Find principal values of inverse trigonometric		trigonometric functions, identifying key		
functions.		features.		
Priority Strategies: The graph of a function and its inverse are symmetric or reflect over the line y=x. Sin x is defined in quadrants I and IV, Cos x is defined in				
quadrants I and II, and Tan x is defined in quadrants I and IV				
Writing: Why do we restrict the domain on the inverse sine and cosine functions?				

Common Struggles:

Alchesay High School Pre-Calculus Chapter 7 Trigonometric Identities and Equations

Summary

Review basic trigonometric identities. Verify trigonometric identities, use sum and difference identities, and use double- angle and half- angle identities. Solve trigonometric equations, find the normal form of a linear equation, and then determine the distance to a line.

Big Ideas Verify trigonometric identities	
Essential Questions	

7.1 Basic Trigonometric Identities

2 Days				
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes	
I will identify and use reciprocal identities,	Identity	RT.RTS.1 Use the structure of a		
quotient identities, Pythagorean identities,	Trigonometric Identity	trigonometric expression to identify		
symmetry identities, and opposite angle	Reciprocal Identities	ways to rewrite it.		
identities	Quotient Identity			
	Pythagorean Identities			
Priority Strategies:				
Have students become familiar with the identit	ies, know which identity to use for ea	ch problem, correctly evaluate values for t	he identities. Have students	
make a formula sheet to prep work for verifying identities.				
Writing:				
Is the inverse of sinO the same as cscO?				

7.2 Verifying Trigonometric Identities

Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes
I will use the basic trigonometric identities to		RT.RTS.1 Use the structure of a	
verify other identities		trigonometric expression to identify	
		ways to rewrite it.	
		RT.RTS.2 Choose and produce an	
		equivalent form of an expression to	
		reveal and explain properties of the	
		quantity represented by the	
		expression.	

Priority Strategies:

Steps to Verifying Identities

- Transform the more complicated side of the equation into the simpler side
- Substitute one or more basic trigonometric identities to simplify expressions
- Factor or multiply to simplify expressions
- Multiply expressions by an expression equal to 1
- Express all trigonometric functions in terms of sine and cosine

Writing: Have students write examples of trigonometric identities and describe how each can be used to find the value of one trigonometric function from the value of another.

7.3 Sum and Difference Identities

Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes	
I will use the sum and difference identities for	Difference Identity for cosine	RT.RTS.1 Use the structure of a		
the sine, cosine, and tangent functions	Sum Identity for cosine	trigonometric expression to identify		
	Difference Identity for sine	ways to rewrite it.		
	Sum Identity for sine	RT.RTS.2 Choose and produce an		
	Difference Identity for Tangent	equivalent form of an expression to		
	Sum Identity for Tangent	reveal and explain properties of the		
		quantity represented by the		
		expression.		
Priority Strategies: Correctly identify the needed formula, properly substitute, and simplify				
Writing: Why do we use sum and difference fo	rmulas to find values as opposed to	using a calculator?		

7.4 Double-Angle and Half-Angle Identities

Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes
I will use the double-angle and half-	Double-angle Identities	RTS.1 Use the structure of a	
angle for the sine, cosine, and tangent	Half-angle Identities	trigonometric expression to identify	
functions.		ways to rewrite it.	
		RT.RTS.2 Choose and produce an	
		equivalent form of an expression to	
		reveal and explain properties of the	
		quantity represented by the	
		expression.	
Priority Strategies: Correctly identify the needed formula, properly substitute, and simplify			
Writing: Write a paragraph about the o	conditions under which you would use each c	f the three identities for cos 20	

7.5 Solving Trigonometric Equations

Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes	
I can solve Trigonometric equations		RT.RTS.3 Solve trigonometric		
and inequalities		equations.		
Priority Strategies: Factor the expression, set each factor equal to 0, and solve for each factor. If the expression cannot be easily factored, then the expression				
may be written in terms of only one trigonometric function. Also student may use a "factor by grouping" strategy.				
Writing: Explain the difference between a trigonometric identity and a trigonometric equation that is not an identity?				

Common Struggles:

Alchesay H.S. 11th and 12th **Pre-Calculus Topic 8 Vectors and Parametric Equations**

Summary

Introduction to vector notation, vector addition, subtraction, multiplication, cross products, and parametric equations.

Topic Relations and Functions

Big Ideas Introduction to vectors and parametric equations **Essential Questions** Why are vectors useful?

Anchor Chart 3.1 Greenstric Vectors 98.2 Vector Aproxims? Vector -> a quantity that his both magnitude 2.5 Application W Vectors Representation of a victor or an ordered part and dure dies 20 R. (aug.) Rickey Thes to problem toloring otator problems Magnikides is the keyth of a vector Magnitude fright = Ja, - K)+ + (g = -4.)2 Direction => of a weater has its institut point at the agent it is in standard plation 1. Draw a labeled diagran that represents the forces We also approximations a fit = (a, and + (b, and + (a, b, A)) 2. Octomine the resultant torces It is verder is IT both the which point and the terminal Sabirations = b= (a art (b to) (a - b, b, - b) that are at theorigen, the restorts 3. Find the angle the resultant faces Equality - Veders are call of Hay have Hasen . Mayne are call of Hay have Hasen 20 Swar mallotante to = they, and = that hand makes with the cast west used. EP. 3 Vectors 1. 30 spaces R(x,y,t) Po(xe, gr, t.) Recultants the sam of surethis 20 [P.P.]= Ja-+,)++(y-+,)*+(z-z)+ Magnitude. [Anthedis] P.4 Report color Veters Manually find Parallelagren Inner product for a perpendicular vectors 20 the resultant $2a = \left(\vec{a} \cdot \vec{b} = a_1 b_1 + \vec{a}_2 b_2\right)$ Praw composites the to the There Reduced { The 5 = a,b, + approximates have save negatate but of direction Cross produced of southers is the or chor performation. to the plane of the other southers Stalar quenty only has magnitude but no streation . (a, (a, (a, a)) 6((a, 10, b))) a × b = (b, a) - (a, a) + (b, a) + a × b = (b, a) Parallelictors have same or opposite directions components two or more vertextual everyone stum mater the resultand

8.1 Geometric Vector

2 Days				
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes	
I can find equal, opposite, and parallel	Vector	RV.EV.1 Recognize vector quantities as		
vectors	Magnitude	having both magnitude and direction.		
	Standard Position	RV.EV.2 Represent vector quantities by		
	Direction	directed line segments, and use		
	Zero Vector	appropriate symbols for vectors and their		
	Resultant	magnitudes.		
	Opposites			
	Scalar Quantity			
	Scalars			
	Parallel			
	Components			
Priority Strategies: Use the Parallelogram Method and Triangle Method for finding the resultant of 2 vectors.				
Writing: Describe a real-world situation in	volving, at least 2, vectors and r	epresent with a diagram		

8.2 Algebraic Vectors

2 Days			
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes
I will find ordered pairs that represent vectors. Add, subtract, multiply, and find the magnitude of vectors algebraically		 RV.EV.3 Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point. RV.EV.4 Solve problems involving velocity and other quantities that can be represented by vectors. RV.EV.5 Add and subtract vectors, and multiply a vector by a scalar. 	
Priority Strategies: Demonstrate how to perform simple operations with vectors and find the magnitude of a vector using the distance formula			
Writing: What is the magnitude of a vector? Why is the distance formula used to find the magnitude of a vector?			

8.3 Vectors in Three-Dimensional Space

2 Days						
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes			
I can add and subtract vectors in 3-d space.	Ordered Triple	RV.EV.4 Solve problems involving velocity and other				
Find the magnitude of vectors in 3-d space.		quantities that can be represented by vectors.				
		RV.EV.5 Add and subtract vectors, and multiply a				
		vector by a scalar.				
Priority Strategies: Graph vectors in 3 space, find the resultant vector through graphing, find the resultant vector algebraically, and find the magnitude by using						
the distance formula.						
Writing: Describe the information you need to find the components of a three –dimensional vector from its given magnitude.						

8.4 Perpendicular Vectors

2 Days					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
I will find the inner and cross product of 2	Dot Product	RV.EV.4 Solve problems involving velocity and other			
vectors	Cross Product	quantities that can be represented by vectors.			
Priority Strategies: Find and use the magnitude of a vector to solve application problems.					
Writing: Show that the cross product of 3-d	ector with itself is the zero	vector			

8.5 Application Vector

Week # Dates:					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
I will solve application problems using	Magnitude	RV.EV.4 Solve problems involving velocity and other			
vectors and right triangle trigonometry		quantities that can be represented by vectors.			
Priority Strategies: Stress that magnitude represents velocity, weight, and gravity					
Writing: Explain what it means for forces to b	oe in equilibrium				

8.6 Vectors and Parametric Equations

2 Days					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
I will write vector and parametric equations	Vector Equations	RV.MP.3 Graph parametric equations and identify			
of a line. Graph parametric equations.	Parametric Equations	orientation.			
	Direction Vector				
	Parameter				
Priority Strategies: Remind students an advantage of parametric equations is that the parameter can be used to represent something useful and therefore					
provide us with additional information about the graph. Often a plane curve is used to trace the motion of an object over a certain interval of time.					
Writing: Explain how to find the parametric e	equations for the line throu	gh the point at (3,6) , parallel to the vector v=i+2j			

8.7 Modeling Motion Using Parametric Equations

2 Days					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
I can model the motion of a projectile using		RV.MP.1 Model real-world contexts with			
parametric equations. Solve problems		parametric equations.			
related to the motion of a projectile, its		RV.MP.4 Analyze and interpret the			
trajectory, and range.		graphs of parametric equations.			
Priority Strategies: Students will find the initial and horizontal velocity in real world problems, remind students that he horizontal and vertical components of a					
vector, v, are perpendicular to each other, so these results come from right triangle trigonometry.					
Writing: Describes situations in which a proj	ectile travel vertically. At what ang	el with the horizontal must the projectile be l	aunched?		

8.8 Transformation Matrices in 3-D Space (optional)

2 Days					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
I can transform 3-d figures using matrix operations to describe the transformation.		RM.UM.2 Use matrix operations to solve problems. Add, subtract, and multiply matrices of appropriate dimensions. Multiply matrices by scalars to produce new matrices.			
Priority Strategies: Basic movement in 3-d space can be described using vectors and transformation matrices, by using the coordinates of a 3-d object and					
transformation operations students will be al	ble to describe the movement.				
Writing: Have students make up the coordinates of the vertices of a parallelepiped or a rectangular prism, and the plot these vertices to make sure that they are					
accurate.					

Common Struggles:

When working with 3x3 matrices there are many operations involved allowing for computational errors to occur. The majority of the work for a 3x3 matrix will be done using the graphing calculator.

Alchesay H.S. 11th and 12th **Pre-Calculus Topic 9 Polar Coordinates and Complex Numbers**

Summary

Introduce polar coordinates and continues the concepts of complex numbers from previous chapters. Students will graph polar equations, polar and rectangular coordinates, and polar forms of linear equations

Topic Relations and Functions

Big Ideas Graph polar equations and convert between polar and rectangular coordinates **Essential Questions** What are polar coordinates?

Anchor Chart

9.1 Polar Coordinates

2 days					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
I can graph points in polar coordinates. Graph	Polar Coordinate System	RT.EPE.1 Graph polar equations.			
simple polar equations. Determine the distance	Polar Coordinates				
between two points with polar coordinates.	Pole				
	Polar Axis				
	Polar Equation				
	Polar Graph				
Priority Strategies: Use graph paper to graph the polar coordinates.					
Writing: Explain why a point in the polar plane can	not be named by a unique ordered	раіг (r, Ө)			

9.2 Graphs of Polar Equations

2 Days			
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes
I can graph polar equations	Limacon	RT.EPE.1 Graph polar equations.	
		RT.EPE.2 Analyze and interpret the	
		graphs of polar equations.	
Priority Strategies: Make a table of input values ar	d output values, use graph paper to	graph the coordinates	
Writing: Write a polar equation whose graph is a re	ose.		

9.3 Polar and Rectangular Coordinates

2 Days					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
I can convert between polar and rectangular		RT.EPE.1 Graph polar equations.			
coordinates					
Priority Strategies: Use x=rcosO and y=rsinO to convert from polar coordinates to rectangular coordinates. The equations to can be manipulated to convert					
rectangular coordinates to polar coordinates					
Writing: Explain why you have to consider what quadrant a point lies in when converting from rectangular coordinates to polar coordinates? Answer: the					
quadrant that the point lies in determines whether	θ is given by Arctan(y/x) + pi				

Common Struggles:

Alchesay H.S. 11th and 12th **Pre-Calculus Topic 10 Conics**

Summary

Students use equations to identify important characteristics of each conic section. Then use these characteristics to graph parabolas, circle, ellipses, and hyperbolas.

Big Ideas Finding Identify key features of circle, hyperbolas, ellipses, and parabolas and graph them **Essential Questions**

Anchor Chart

10.1 Conics

2 Days					
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes		
I will find the distance and midpoint between	Analytic Geometry	Pre-requisite for conics			
two points on a coordinate plane .					
Priority Strategies: Use the distance and midpoint formulas					
Writing: Describe how can you show that a midpoint of a segment is equidistant from its endpoints given the coordinates of each point. Answer: Use the					
distance formula to show that the measure of the distance from the midpoint to either endpoint is the same.					

10.2 Circles

2 Days			
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes
I will use and determine the standard and	Concentric	RFR.IC.1 Model real-world situations	
general forms of the equation of a circle.	Circle	which involve conic sections. RFR.IC.2	
Graph circles	Radius	Identify key features of conic sections	
	Conic Section	(foci, directrix, radii, axes, asymptotes,	
		center) graphically and algebraically.	
		RFR.IC.3 Sketch a graph of a conic section	
		using its key features.	
		RFR.IC.4 Use the key features of a conic	
		section to write its equation.	
		RFR.IC.5 Given a quadratic equation of	
		the form $ax^2 + by^2 + cx + dy + e = 0$,	
		determine if the equation is a circle,	
		ellipse, parabola, or hyperbola.	
Priority Strategies: Write the standard form	of an equation of a circle and g	raph it. Use properties of circles to solve real-wo	rld problems.
Writing: Explain how to convert the general	form of the equation of a circle	to the standard from of the equation of a circle.	Answer:

10.3 Ellipses

Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes
I will use and determine the standard and	Ellipse	RFR.IC.1 Model real-world situations	
general forms of the equation of an ellipse.	Foci	which involve conic sections. RFR.IC.2	
Graph ellipses	Center	Identify key features of conic sections	
	Major Axis	(foci, directrix, radii, axes, asymptotes,	
	Minor Axis	center) graphically and algebraically.	
	Vertices	RFR.IC.3 Sketch a graph of a conic	
		section using its key features.	
		RFR.IC.4 Use the key features of a conic	
		section to write its equation.	
		RFR.IC.5 Given a quadratic equation of	
		the form $ax^2 + by^2 + cx + dy + e = 0$,	
		determine if the equation is a circle,	
		ellipse, parabola, or hyperbola.	
Priority Strategies: Write the standard form	of an equation of an ellipse and	d graph it. Use properties of ellipses to solve real-	world problems.
Writing: Explain how to determine whether	the foci of an ellipse lie on the	norizontal or vertical axis of the ellipse	•

10.4 Hyperbolas

2 Days			
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes
I can use and determine the standard and	Hyperbola	RFR.IC.1 Model real-world situations	
general forms of the equation of a	Foci	which involve conic sections. RFR.IC.2	
hyperbola. Graph hyperbola	Center	Identify key features of conic sections	
	Vertex	(foci, directrix, radii, axes, asymptotes,	
	Asymptotes	center) graphically and algebraically.	
	Transverse Axis	RFR.IC.3 Sketch a graph of a conic	
	Conjugate Axis	section using its key features.	
		RFR.IC.4 Use the key features of a conic	
		section to write its equation.	
		RFR.IC.5 Given a quadratic equation of	
		the form $ax^2 + by^2 + cx + dy + e = 0$,	
		determine if the equation is a circle,	
		ellipse, parabola, or hyperbola.	
Priority Strategies: Write the standard form of an equation of a hyperbola and graph it. Use properties of hyperbolas to solve real-world problems.			
Writing: Compare and contrast the standard forms of the equations of hyperbolas and ellipses.			

10.5 Parabolas

2 Days				
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes	
I can use and determine the standard and	Focus	RFR.IC.1 Model real-world situations		
general forms of the equation of a	Directix	which involve conic sections.		
hyperbola. Graph hyperbola	Axis of Symmetry	RFR.IC.2 Identify key features of conic		
	Vertex	sections (foci, directrix, radii, axes,		
		asymptotes, center) graphically and		
		algebraically.		
		RFR.IC.3 Sketch a graph of a conic section		
		using its key features.		
		RFR.IC.4 Use the key features of a conic		
		section to write its equation.		
		RFR.IC.5 Given a quadratic equation of		
		the form $ax^2 + by^2 + cx + dy + e = 0$,		
		determine if the equation is a circle,		
		ellipse, parabola, or hyperbola.		
Priority Strategies: Write the standard form of an equation of a hyperbola and graph it. Use properties of hyperbolas to solve real-world problems.				
Writing: Explain a way in which you might distinguish the equation of a parabola from the equation of a hyperbola.				

Common Struggles:

Alchesay H.S. 11th and 12th **Pre-Calculus Topic 12 Sequences and Series**

Summary

Deciding if a relation is a function and if so describing the domain and range. Finding composite functions. Identifying piece wise function.

Chapter 12 Sequences and Series

Summary:

Review arithmetic and geometric sequences. Students explore such topics as limits, sums, convergence of series, and divergence of series, and sigma notation.

Big Ideas: Explore series and sequence relationships and patterns **Essential Questions:** Where can sequence and series be found in real life?

Anchor Chart

12.1 Arithmetic Sequences and Series

2 Days			
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes
I can find the nth term and arithmetic	Sequence	RFR.ISS.1 Model real-world situations	
means of an arithmetic sequence. Find	Terms	involving sequences or series using recursive	
the sum of n terms of an arithmetic	Arithmetic Sequence	and/or explicit definitions.	
series.	Terms		
Priority Strategies: Use the common difference to find the nth term of a sequence			
Writing: Describe the common difference for an arithmetic sequence in which the terms are decreasing			

12.2 Geometric Sequences and Series

2 Days			
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes
I will find the nth term and geometric	Geometric Sequence	RFR.ISS.4 Find the sums of finite or infinite	
means of a geometric sequence	Common Ratio	series, if they exist.	
Priority Strategies: Use the common ratio to find the nth term of a sequence			
Writing: Compare and contrast arithmetic and geometric sequences			

12.3 Infinite Sequences and Series

2 Days			
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes
I will find the limit of the terms of an	Infinite Sequence	RFR.ISS.4 Find the sums of finite or infinite	
infinite sequence. Find the sum of an	Limit	series, if they exist.	
infinite geometric series.			
Priority Strategies: First find the limit intuitively using values, then find limits using theorems for limits			
Writing: Give an example of an infinite geometric series having not sum. Answer: 2+4+6+8			

12.4 Convergent and Divergent Series

2 Days			
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes
I will determine whether a series is	Converge	RFR.ISS.2 Use covariational reasoning to	
convergent or divergent	Diverge	describe sequences and series.	
Priority Strategies: If a series has a limit it is convergent if a series has no limit it is divergent. A summary of series for reference and a comparison test will be			
used as well.			
Writing: Ask students to describe the different tests for determining whether a series is convergent or divergent.			

12.5 Sigma Notation and the nth Term

2 Days			
Learning Goals and Success Criteria	Essential Vocabulary	Standards	Resources/ Notes
I can use sigma notation	Sigma Notation	RFR.ISS.3 Represent finite or infinite series	
	Index of Summation	using sigma notation.	
	Factorial		
Priority Strategies: Have students write each expression in expanded form and then find the sum. Then have them express a series using sigma notation.			
Writing: Have students write a paragraph explaining how to express a series that has a general formula for the nth term using sigma notation.			

Common Struggles: